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1 The Particle Counting Noise

We define the Particle Counting noise as a random process nc(t), whose con-
tribution corresponds to the difference between the measured particle con-
centration at the receiver location ĉR(t) and the expected measured particle
concentration ⟨ĉR(t)⟩, where ⟨.⟩ denotes the ensemble average operator:

nc(t) = ĉR(t)− ⟨ĉR(t)⟩ (1)

The expected particle concentration rate ⟨ĉR(t)⟩ corresponds the true particle
concentration cR(t) that we would measure at the receiver in the absence of
noise:

⟨ĉR(t)⟩ = cR(t)ϵR (2)

In other words, nc(t) is an unwanted perturbation on the particle concentra-
tion measured at the receiver location around its expected value cR(t) due
to the particle counting noise.

In order to properly model the Particle Counting noise random process
nc(t) we consider the following assumptions:

• the actual number of particles N̂p(t) inside the receptor space incre-
ments/decrements its value when a particle enters/leaves the receptor
space. Since particles are independent, these events can be supposed
independent.

• The occurrence rate of particle entering/leaving the receptor space
is proportional to the particle concentration at the receiver location
c(xR, yR, zR, t), equal to the expected continuous particle concentration
cR(t).
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Under these assumptions, the resulting actual number of particles N̂p(t) in-
side the receptor space is a volume Non-Homogeneous Poisson counting pro-
cess, whose rate of occurrence corresponds to the expected particle concen-
tration cR(t):

N̂p(t) ∼ Poiss(cR(t)) (3)

According to Eq. (3) we can recover the PDF of the actual number of particles
N̂p(t) in the receptor space at time t, given the expected particle concentra-
tion cR(t):

Pr
(
N̂p(t) = m

)
=

(cR(t)(4/3)πρ
3)

m

m!
e−cR(t)(4/3)πρ3 (4)

According to the Poisson process in Eq. (3), the expected number of parti-
cles ⟨N̂p(t)⟩ contained in the receptor space can be computed by multiplying
the volume Poisson process rate, which is the concentration cR(t), by the size
of the receptor space (4/3)πρ3:

⟨N̂p(t)⟩ = cR(t)
4

3
πρ3 (5)

Its variance in the number of particles contained in the receptor space has
the same value as ⟨N̂p(t)⟩:

⟨(N̂p(t)− ⟨N̂p(t)⟩)2⟩ = cR(t)
4

3
πρ3 (6)

The actual measured particle concentration ĉR(t) corresponds to the ac-
tual number of particles N̂p(t) divided by the size of the receptor space:

ĉR(t) =
N̂p(t)

(4/3)πρ3
(7)

Therefore, the average ⟨ĉR(t)⟩ of the actual measured particle concentration
is equal to the expected particle concentration cR(t):

⟨ĉR(t)⟩ = cR(t) (8)

The variance of the actual measured particle concentration is equal to the ex-
pected particle concentration cR(t) divided by the size of the receptor space:

⟨(ĉR(t)− ⟨ĉR(t)⟩)2⟩ =
cR(t)

(4/3)πρ3
(9)
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Given Eq. (1) and Eq. (2), the random process nc(t) has zero average
value and the RMS of the perturbation nc(t) on the actual measured particle
concentration ĉR(t) is:

RMS(nc(t)) =
√

⟨(ĉR(t)− ⟨ĉR(t)⟩)2⟩ =

√
cR(t)

(4/3)πρ3
(10)

It is possible to reduce the value of RMS(nc(t)) through averaging in time
a number M of measures of the particle concentration ĉR(t):

ĉR(t) =
1

M

M∑
m=1

ĉR(t− tm) (11)

The best results in terms of noise are obtained when the M measures are
statistically independent. For this, we assume independent measures when
they are taken at time instants spaced by an interval τp, as defined in [1].
Then, if we also assume to have a quasi-constant expected concentration in
a time interval τ (which means that the bandwidth of the signal cR(t) is less
than 1/τ), then the maximum value of M is equal to the time interval τ
divided by τp:

M =
τ

τp
(12)

thus, reducing the RMS of the perturbation RMS(nc(t)) by a factor
√
M :

RMS(nc(t)) =

√
cR(t)

(4/3)πρ3M
(13)

The waiting time τp corresponds to the average time required for a par-
ticle to leave the reception space. τp is equal to the average distance to the
spherical boundary, divided by the velocity of a particle vp. The average
distance corresponds to the receptor space radius ρ:

τp =
ρ

vp
(14)

The velocity vp of a particle comes from the first Fick’s law of diffusion [3,5].
For this, the particle concentration flux J̄(x̄, t) at time instant t and location
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x̄, is equal to the spatial gradient (operator ∇) of the particle concentration
c(x̄, t) multiplied by the diffusion coefficient D:

J̄(x̄, t) = −D∇c(x̄, t) (15)

When we have homogeneous concentration c̄ inside the receptor space and
zero concentration outside the receptor space,∇c(x̄, t) is equal to the opposite
−c̄ of the concentration divided by the radius ρ of the receptor space. Further,
the particle concentration flux J̄(x̄, t) is equal, by definition, to the particle
concentration c̄ multiplied by the particle velocity vp. If we solve Eq. (15)
for the particle velocity, we obtain:

vp =
D

ρ
(16)

The average time τp is therefore equal to the radius ρ squared and divided
by the diffusion coefficient D:

τp =
ρ2

D
(17)

which is in agreement with the results from [1,2]. The final expression for
the RMS of the perturbation RMS(nc(t)) becomes:

RMS(nc(t)) =

√
cR(t)

(4/3)πDρτ
(18)

where cR(t) is the expected measured particle concentration, D is the diffu-
sion coefficient, ρ is the radius of the receptor space and τ is the time interval
in which we expect a quasi-constant particle concentration.

According to [6], the relation between the input particle concentration
rate r̂T (t) and the measured particle concentration cR(t) at the receiver lo-
cation is expressed in the frequency (f) domain as:

c̃R(f) = B̃(f)˜̂rT (f) (19)

where ˜̂rT (f) and c̃R(f) are the Fourier transforms [4] of the particle concen-
tration rate r̂T (t) and the particle concentration cR(t), respectively. B̃(f)
is the Transfer Function Fourier Transform [4] (TFFT) of the propagation
module. The same relation in the time (t) domain becomes:

cR(t) = b(t) ∗ r̂T (t) (20)
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where ∗ denotes the convolution operator [4], b(t) is the impulse response of
the propagation module and r̂T (t) is the input particle concentration rate.
The formula for the RMS of the perturbation RMS(nc(t)) on the signal ĉR(t)
becomes:

RMS(nc(t)) =

√
b(t) ∗ r̂T (t)
(4/3)πDρτ

(21)

where D is the diffusion coefficient, ρ is the radius of the spherical receptor
space, and τ is the time in which we expected a quasi-constant particle
concentration.
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